

MAPAQ - Journées acéricoles 2017

L'ÉTAT DE LA RECHERCHE SUR LES AGENTS ANTIMOUSSANTS

Par

Nathalie Martin, Ph.D. Chercheur

Centre ACER

CE QUE NOUS VOULIONS FAIRE

Améliorer le contrôle du moussage dans les casseroles de l'évaporateur en production acéricole biologique et conventionnelle :

- Évaluer et comparer l'efficacité de différents agents antimoussants
- Évaluer et comparer l'efficacité de différentes méthodes alternatives
- Évaluer la procédure de contrôle du moussage au cours de la production de sirop d'érable

DE QUOI PARLERONS-NOUS AUJOURD'HUI

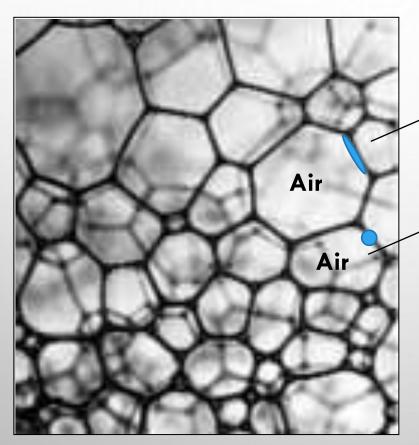
- La formation de la mousse et son contrôle
- Le gonflement dans les casseroles
- Efficacité des moyens de contrôle de la mousse
 - ✓ Produits antimoussants
 - ✓ Méthodes alternatives
- Effets sur le procédé et les propriétés du sirop d'érable
- Validation en entreprises
- Bonnes pratiques d'utilisation des antimousses en acériculture
- Conclusions


LA TENSION DE SURFACE D'UN LIQUIDE

LA FORMATION DE LA MOUSSE

Molécules tensioactives :

- ✓ Sucres réducteurs (glucose, fructose)
- ✓ Protéines ou fragments de protéines
- ✓ Acides aminés


Bensouissi, 2007

LES MOYENS D'ÉLIMINATION DE LA MOUSSE

- L'utilisation de moyens mécaniques
- L'utilisation de moyens physiques
- L'utilisation d'agents de contrôle de la mousse (antimousses)
 - √ Facilité d'emploi
 - ✓ Rapidité d'action
 - ✓ Faible coût

MÉCANISME D'ACTION DES ANTIMOUSSES

Rupture de la mousse (coalescence)

Bensouissi, 2007

Étalement de la gouttelette à la surface du film (produits liquides)

La particule perce le film et entraîne la rupture de la mousse (produits solides)

LE GONFLEMENT DANS LES CASSEROLES

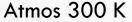
- Effet de la chaleur, de la concentration et de la composition de la sève
- Utilisation des antimousses : Pratique tolérée mais non encadrée
- Risques de mauvaise utilisation ou de surutilisation
- Dépôts dans les casseroles et/ou résidus dans le sirop d'érable
- Altération de la saveur (goût de gras rance, défauts étranges)
- Perte de la valeur commerciale du sirop d'érable
- Potentiel allergène

UTILISATION D'AGENTS DE CONTRÔLE DE LA MOUSSE

- ✓ Quel produit utiliser (biologique, conventionnel) ?
- ✓ Quand et où l'ajouter (au besoin seulement)?
- ✓ Quelle quantité ajouter (le moins possible) ?
- ✓ Qualité et sécurité du sirop d'érable produit!
- ✓ Le sirop d'érable, un produit pur !

EFFICACITÉ DES ANTIMOUSSES TESTÉS (LABORATOIRE)

Sève	Temps de destruction de la mousse (sec.)			
	0:00 à 0:05	0:06 à 0:10	> 0:10	aucun effet
1	18	2	2	1
2	13	8	2	-


- ✓ Un total de 23 produits testés (concentré de sève, dispositif de laboratoire)
- ✓ Antimousses conventionnels de référence (Atmos 300 K, Aldo HMS)
- ✓ Antimousses certifiés biologiques de référence (Huiles de canola, de tournesol désodorisée et de carthame)
- ✓ Antimousses commerciaux de grade alimentaire (silicone et dérivés d'huiles végétales)

ANTIMOUSSES SÉLECTIONNÉS

Produit	Composition	Utilisation en alimentaire
J-305 IP * (Sans OGM)	 Mono et Diglycérides > 85% Propylène glycol < 15% 	Agent antimoussant : • Sirops de sucre • Confitures et gelées
Atmos®300 K	 Monoglycérides >46% Diglycérides Propylène glycol Gallate de propyle Acide citrique 	Agent émulsifiant : • Breuvages sportifs • Suppléments nutritionnels • Colorants à café
Foam Blast®ORG 40 * (Biologique)	 Huile de tournesol haut oléique Cire de carnauba 	Agent antimoussant : • Légumes • Tofu et Soya • Pommes de terre
Huile de canola vierge (Biologique, sans OGM)	Première pression à froidVierge (Point fumée = 107°C)	Ingrédient : • Préparations culinaires

^{*} Produits en test (non recommandés pour l'instant)

PRODUCTION DE SIROP D'ÉRABLE À L'ÉCHELLE PILOTE

J-305 IP

Huile de canola biologique

Foam Blast ORG 40

Sève de fin de saison (préchauffage à 80 °C)

✓ Elevée/Faible: Température élevée dans les plis et faible dans les plats (moussage dans les plis, transfert 29,2 °Brix)

✓ Faible/Élevée : Température faible dans les plis et élevée dans les plats (moussage dans les plats, transfert 13,7 °Brix)

EFFICACITÉ DES ANTIMOUSSES TESTÉS

Antimousse	Intensité de chauffage (Plis-Plat)	Nombre d'interventions dans les plis	Nombre d'interventions dans les plats
Atmos 300 K	Faible/Élevée	0	2
	Élevée/Faible	5	0
J-305 IP	Faible/Élevée	0	3
	Élevée/Faible	5	0

EFFICACITÉ DES ANTIMOUSSES TESTÉS (SUITE)

Antimousse	Intensité de chauffage (Plis-Plat)	Nombre d'interventions dans les plis	Nombre d'interventions dans les plats
Huile de canola	Faible/Élevée	0	6
biologique	Élevée/Faible	26	0
Foam Blast	Faible/Élevée	0	9
ORG 40	Élevée/Faible	23	0

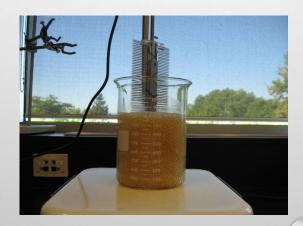
EFFET SUR LE GOÛT DU SIROP PRODUIT

Antimousse	Condition de traitement	Consensus
A. 200 K	Faible/Élevée	√R1
Atmos 300 K	Élevée/Faible	√R1
	Faible/Élevée	V
J-305 IP	Élevée/Faible	V
Huile de canola biologique	Faible/Élevée	V
	Élevée/Faible	√R1
5 N . ODO 10	Faible/Élevée	$\sqrt{R4}$ (antimousse)
Foam Blast ORG 40	Élevée/Faible	√R1

- \checkmark Sève de fin de saison = Sirop C (35 %T), défaut d'origine naturelle : $\sqrt{-\sqrt{R1}}$
- ✓ Aucune tendance particulière sur le pH, la conductivité électrique, la couleur et le profil des arômes volatils

LE BOIS BARRÉ (ACER PENNSYLVANICUM)

- √ Technique encore pratiquée par certains acériculteurs
- ✓ Autorisé en acériculture biologique
- ✓ Technique inefficace dans les conditions testées
- ✓ Blocs de bois submergés par la mousse
- √ Débordement de certaines casseroles
- Résidus inhabituels observés au fond des casseroles : morceaux d'écorce?


ÉVALUATION DE MÉTHODES ALTERNATIVES MÉCANIQUES

Vaporisation d'eau en surface

Jet d'air comprimé en surface

Dispositif mécanique rotatif

VALIDATION EN ENTREPRISES

Contribution financière de 4 500\$ du MAPAQ - Direction régionale de la Chaudière-Appalaches

Programme d'appui au développement de l'agriculture et de l'agroalimentaire en région (Mesure 4051)

- Problématique de moussage en production
- Deux entreprises par région
- Estrie, Bas-Saint-Laurent, Chaudière-Appalaches, Centre-du-Québec
- Tests effectués chez huit entreprises acéricoles (23 mars au 24 avril 2016)
- Tests réalisés par les conseillers acéricoles du MAPAQ

DISPOSITIF EXPÉRIMENTAL (SUITE)

- Antimousses à l'étude :
 - ✓ J-305 IP
 - ✓ Huile de canola biologique, au lieu du Foam Blast ORG 40
- Un seul type d'antimousse testé par entreprise
- Tests réalisés par les conseillers acéricoles du MAPAQ
- Procédure de contrôle habituelle de l'entreprise
- Production: 1 baril

UTILISATION DES ANTIMOUSSES PAR LES PRODUCTEURS

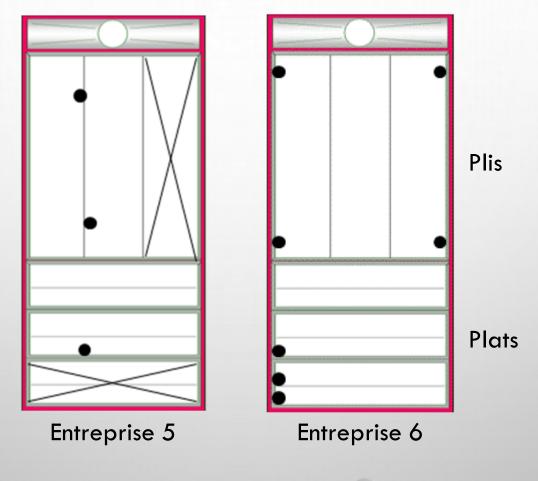
- Hétérogénéité des procédures d'utilisation (huit entreprises acéricoles)
 - ✓ Type d'antimoussant
 - ✓ Ajout «en continu» ou au besoin, manuellement ou à l'aide d'un dispositif de contrôle de la mousse
 - ✓ Type et forme des dispositifs (gobelets en bois ou en acier inoxydable, blocs de bois trempés, etc.)
 - ✓ Disposition dans l'évaporateur (plis, plats, hauteur, nombre de dispositifs, etc.)
 - ✓ Quantité d'antimousses utilisée (22,5 à 180 ml)

J-305 IP (Entreprises 1 à 4)

- Très efficace à faire baisser le niveau de la mousse (1, 3, 4)
- Sève ne mousse plus suite au contact avec cet antimousse (4)
- Odeur particulière observée au dessus des casseroles (1, 4)
- Le J-305 IP aurait un goût plus fort que l'huile de canola (2)

J-305 IP (Entreprises 1 à 4)

- Aucun remplissage des gobelets n'a été nécessaire après le début de ces essais
- Pas de commentaires négatifs sur le sirop produit dans l'ensemble
- Un cas où le sirop à une faible odeur et un léger goût d'antimousse (4)
- Un seul sirop évalué $\sqrt{R4}$ sans mention spécifique à l'antimousse (4)
 - Niveau de liquide bas dans les casseroles ?
 - Dispositifs antimousse dans les plats ?


Huile de canola biologique (Entreprises 5 à 8)

- Efficacité bonne au début mais semble diminuer au fur et à mesure du déroulement des tests, la mousse submerge même les gobelets à certains moments
- Remplissages plus fréquents des gobelets (5, 6, 7, 8)
- Une odeur désagréable au dessus des casseroles a été observée (5, 6)

Huile de canola biologique (Entreprises 5 à 8)

- Meilleure que l'huile de carthame (7, 8)
- Problème de qualité dans le sirop produit dans deux cas (5, 6)
- Un seul sirop évalué $\sqrt{R4}$ sans mention spécifique à l'antimousse (6)

Disposition des gobelets d'antimousse

CE QUE L'ON PEUT CONCLURE (ANTIMOUSSES)

- Les antimousses testés se sont comportés de <u>façon similaire</u> aux produits traditionnellement utilisés en acériculture
- Les antimousses sont soumis à <u>une haute température et sont exposés à l'air</u> pendant les longues périodes de production (dégradation et mauvais goûts)
- L'un ou l'autre des produits testés peut présenter une certaine efficacité pour le contrôle de la mousse mais <u>la façon de l'utiliser</u> peut parfois engendrer des problèmes de qualité dans le sirop d'érable produit

CE QUE L'ON PEUT CONCLURE (PROCÉDÉ)

- Les différents <u>dispositifs utilisés en acériculture</u> ne sont pas conçus pour permettre de contrôler de façon adéquate la quantité d'antimousse ajoutée
- L'ajout de l'antimousse surtout dans les plats peut avoir un impact négatif sur la saveur du sirop produit
- L'efficacité <u>de certains produits</u> ajoutés dans les casseroles à plis semble se manifester jusque dans les plats
- Au delà du choix d'un type de produit antimoussant adéquat et performant,
 son mode d'utilisation s'avère donc être le point le plus critique et se doit
 d'être optimisé

CE QUE L'ON PEUT CONCLURE (BIOLOGIQUE)

- L'huile de canola vierge biologique s'est avérée aussi efficace que le FOAM BLAST ORG 40, un antimousse commercial biologique (évaporateur pilote)
- L'huile de canola vierge est une huile fragile (lumière et chaleur)
- L'un ou l'autre des produits testés peut présenter une certaine efficacité pour le contrôle de la mousse mais <u>la façon de les utiliser</u> peut parfois engendrer des problèmes de qualité dans le sirop d'érable produit
- Deux nouveaux produits antimoussants biologiques sont actuellement testés dans l'évaporateur pilote du Centre ACER. Alternatives intéressantes...

QUE DEVRIONS-NOUS INVESTIGUER MAINTENANT?

- 1. Comportement de la sève dans l'évaporateur après l'ajout d'antimousse
 - ✓ Durée de l'efficacité lorsqu'appliqué dans les pannes à plis ?
 - ✓ Impacts sur les paramètres de production (régularité des coulées, taux d'évaporation, etc.) ?
- 2. Investigation plus approfondie des méthodes alternatives (suite)
- 3. Dispositif de contrôle automatisé du niveau de la mousse
 - ✓ Équipement muni de sondes pour mesurer le niveau de la mousse et d'une pompe qui contrôle le volume d'antimousse ajouté au moment voulu
 - ✓ Moins contraignant pour le producteur
 - ✓ Diminuerait de façon appréciable la quantité d'antimousse ajoutée
 - ✓ Existe dans d'autres secteurs agroalimentaires (ex. fermentation)

BONNES PRATIQUES POUR LE CONTRÔLE DU MOUSSAGE

CTTA-Section 7.0-Rubrique 900 (2004)

- Utiliser une eau d'érable de bonne qualité
- Optimiser les paramètres d'opération de l'évaporateur
- Choisir un produit commercial de grade alimentaire (conventionnel ou biologique) possédant une bonne capacité antimoussante et peu enclin à produire des défauts de saveur
- Exiger les informations nécessaires sur le produit utilisé

BONNES PRATIQUES POUR LE CONTRÔLE DU MOUSSAGE

- Proscrire l'utilisation de produits pouvant causer des réactions allergiques
- Effectuer un contrôle de la qualité du produit antimoussant avant son utilisation en production
- Ajouter l'antimousse uniquement lorsqu'un gonflement excessif survient et en petites quantités à la fois

REMERCIEMENTS

- Conseillers acéricoles MAPAQ
 Raymond Bernier
 Bernard Lapointe
 David Lapointe
 Rachel Proulx
 Éric Roy
- Soutien financier MAPAQ
- Producteurs acéricoles du Québec (travaux terrain)
- Fournisseurs de produits antimoussants

Carmen Charron Mélissa Cournoyer Jessica Houde Stéphane Corriveau Mustapha Sadiki

Centre ACER

- ACER Division Inspection
- Francine Caron acéricultrice (Bois barré)

Merci de partager notre passion!

www.centreacer.qc.ca